

CLIMEWORKS Capturing CO₂ from air

DACS & CARBFIX2 PILOT PROJECT

EU Pavilion 17.11-17.20

December12, 2018

Christoph Beuttler, CDR Manager, christoph.beuttler@climeworks.com

WORLD'S FIRST COMMERCIAL DAC PLANT

- World's first company supplying atmospheric CO₂ to customers
- 14 plants across Europe (TRL8)
- 65 FTEs
- Energy requirements: 1/5th electricity, 4/5th low-temperature heat at ~100C (waste or renewables)
- Minimal carbon footprint:
 90% net efficiency (mid term target 95%)
- Expected **cost \$100/t** by 2028-30

CO₂-REMOVAL VIA DIRECT AIR CAPTURE

CARBON REMOVAL IN HELLISHEIDI ICELAND

GEOLOGICAL CO₂ STORAGE POTENTIAL

• Climeworks follows a 2-step strategy for geological CO₂ storage:

Step 1: Underground mineralization of CO₂

Source: DePaolo, Donald und Manga, Michael. Deep origin of Hotspots - the Mantle Plume Model. s.l. : Science, 2003.

Step 2: Conventional geological CO₂ storage

- Explored global potential at operational sites
 > 1'200 Gt
- Global estimate for conventional geological CO₂ storage (e.g. depleted oil and gas fields, deep saline aquifer) potential currently lies at around 7'000 Gt

CO₂ REMOVAL APPROACHES – A COMPARISON

CDR – Scale up needs to start now to reach pathways

Feedback <

Figure 6. The growing need to scale up NETs from IAM results (A. upper) and the R&D-focused literature on NETs (B.lower). We see a dearth of work on the areas that will be crucial to the widespread deployment of NETs, notably in demonstration projects, niche markets, demand pull mechanisms, and public acceptance.

- Urgency to Scaling up NETs is largely unappreciated
- Annual NETs growth rate required 2019 until 2050 to meet 6 Gigatonnes ~ 58%
-80% per year, if delayed to 2025 ...
- > 100% from 2030,...

EU Transportation sector final energy demand by fuel type (eDrive scenario)

Source: DENA (2017) The Potential of electricity-based fuels for low emissions transport in the EU

EU CO₂ demand for synfuels vs. fossil fuels

CO₂-NEUTRAL FUELS VIA DIRECT AIR CAPTURE

SCALEABILITY AND LAND REQUIREMENT

Surface area needed to cover the 2010 EU transportation energy demand (17.000 PJ/year)

Climeworks AG Birchstrasse 155 • CH - 8050 Zurich +41 (0) 44 533 29 99 • contact@climeworks.com

www.climeworks.com

